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Abstract
Theoretical studies of how the electronic properties of carbon nanotubes are
affected by foreign adsorbed atoms are commonly done by ab initio electronic
structure calculations in which a single impurity atom is considered. Although
these calculations are essential to understand how the system responds to
doping, they are by no means sufficient, since, in reality, a large disordered
array of adatoms must be considered. It is then necessary to combine ab
initio techniques with less computationally demanding methods if one wishes
to describe the real effect of doping on the electronic properties of nanotubes.
Here we propose a method that makes use of ab initio results for single
impurities as an input to generate the parameters of the less demanding tight-
binding technique. It is based on suitable sum rules for the Green functions of
the impurity-free nanotubes and does not rely on band-structure fitting. The
resulting parameterization allows us to describe disordered systems without
missing the important contributions due to charge transfer and screening. The
method is illustrated with hydrogen atoms adsorbed to a nanotube, for which
the transport properties are subsequently investigated.

1. Introduction

The use of carbon nanotubes (CNs) as functional electronic devices is currently the focus of
much research, and is primarily driven by the miniaturization strategies of the electronics and
computer industries. Such strategies require an understanding of the transport properties of
nanotube-based materials with the aim of tuning their conductivities through controlled doping
processes. Substitutional impurities, chemisorbed and physisorbed adatoms, nanoparticles and
molecules are some of the examples that have already been considered as possible doping
agents both on the experimental and theoretical fronts [1–4].

The experimental achievements in this field have been outstanding. For instance,
nitrogen-doped CNs have been carefully synthesized and characterized by scanning tunnelling
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spectroscopy [5]. Regarding the doping effect on the transport properties, a strong n-type
donor state near the Fermi level was identified as primarily responsible for modulating the
conductance of the doped structure, in agreement with theoretical predictions. Field-effect
transistors with n-type current were produced using single-walled CNs doped with randomly
dispersed potassium atoms [6]. It has been argued that the n-type doping may contribute to
the enhancement of on-currents of those transistors due to the chemically suppressed Schottky
barriers at the contacts, suggesting that a device comparable to a silicon n-MOSFET could
be designed. Furthermore, the ability to change the conductance of a nanotube exposed to
dispersed gaseous molecules is driving the search for sensitive devices capable of detecting
minute concentrations of certain substances.

The advances on the theoretical front have not progressed at a similar pace, mainly due to
the large computational complexity of calculations involving doped structures. The complexity
increase results from the need to include a large number of impurity atoms, together with
the greater accuracy required to treat systems reliably at the nanoscale. Whereas modern
ab initio techniques based on density functional theory (DFT) can achieve a good degree of
accuracy to describe the electronic structure of pristine crystalline materials, it is somewhat
restricted when dealing with disordered systems. In fact, DFT calculations for doped nanotubes
have been attempted but have always been limited to a very small number of impurities. For
instance, studies of transition-metal-doped nanotubes investigated their electronic and magnetic
properties both in isolation and in bundles but were restricted to fewer than four impurities
per unit cell [7]. DFT was again used to investigate the encapsulation of Li+ ions to assess
whether nanotubes could be used as lithium-based batteries, but in this case only a single Li
atom was considered [8]. Such calculations may be indicative of the effects that doping brings
to certain electronic properties, but as far as the conductance of a doped system is concerned,
the limitation to a small number of impurities can be misleading. Multiple scattering events that
naturally reduce the extended character of the electronic wave functions are not fully accounted
for in the case of very few impurities, which suggests that the effect of disorder on the transport
properties would be somewhat underestimated in those cases. Even when large unit cells are
considered, which in principle allows calculations with an increased number of impurities, the
results bear little statistical significance since many configurations are needed to truly represent
the statistical ensemble of the disordered system.

To overcome this problem, less computationally demanding techniques must be used. A
combination of tight-binding (TB) methods and ab initio calculations is one natural choice. The
advantage of this type of combination is in the simplicity with which one can include scattering
effects generated by randomly distributed impurities without major compromises to accuracy.
One of the suggested methods for combining the two techniques is by fitting the zone-folded TB
band structure to that obtained by DFT calculations [9, 10]. While this is a possible strategy,
it may involve fitting eigenvalues that do not necessarily contribute directly to the ground-
state energy, a quantity known to be the most reliable output in first-principles calculations.
Moreover, the fitting is not unique since it is dependent on the choice of points of the Brillouin
zone that the band structure must be matched to. Rather than band-structure fitting, here we
suggest an alternative method that relies on ab initio evaluations for the binding energy and for
the charge transfer to provide the appropriate values for the tight-binding parameters.

We focus on nanotubes doped with adsorbed atoms attached to their walls, but it is worth
emphasizing that the method is quite general and, in principle, can be applied to any low-
dimensional system in the presence of impurities. Depending on the degree of interaction
between the nanotube host and the impurity adatoms, the transport properties of the former
can be modified quite significantly. Our method is based on a set of equations that relate the
change in the global density of states to changes in both the local charge and the total energy.
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By relating all these quantities under a common framework we not only obtain the appropriate
model parameters, but may also see the effects that doping may bring to the physical properties
of a nanotube in a transparent fashion. In what follows, we introduce the method in the next
section, followed by its application to the illustrative case of hydrogen-doped nanotubes. Their
transport properties are subsequently calculated.

2. Description of the method

We start by considering, first, a situation in which a nanotube and a single adatom are
decoupled. As we shall see, one of the advantages of our method is that it uses information
about the system in its decoupled configuration. The system is described by a Hamiltonian
Ĥ0 = ĥ0 + ĥa , where ĥ0 and ĥa correspond to the individual Hamiltonians for the tube
and the impurity atom, respectively. For the sake of simplicity, we choose to represent the
electronic structure of the nanotube by a single π -band Hamiltonian. This is known to be
the relevant electronic orbital at the Fermi level, which consequently determines the transport
properties of nanotubes. It is worth mentioning that the use of such a simplified Hamiltonian
for ĥ0 is primarily chosen to ease the presentation of the method and bears no limitation to
its applicability. In fact, it is straightforward to generalize the procedure described here to a
multiorbital representation of the nanotube. The Hamiltonian ĥ0 is written in operator form as

ĥ0 =
∑

i

[
|i〉ε0〈i | +

∑

j

|i〉γ0〈 j |
]

(1)

where |i〉 is a Hilbert-space vector representing an electron localized on a carbon atom
labelled by the index i . The quantities ε0 and γ0 are the on-site energy and hopping integral
parameters for the carbon atoms of the pristine tube, respectively. The sum over j extends
over nearest neighbours only. The Hamiltonian ĥa for the isolated atom is concisely written
as ĥa = |a〉εa〈a|, where |a〉 represents the atomic orbital associated with the level εa . Once
again for the sake of simplicity, we choose to represent the electronic structure of the atomic
impurity by a single level. This too is an easily relaxable constraint that brings no limitation to
the methodology here presented.

When decoupled, both the nanotube and the impurity atom can be accurately described
by suitable TB parameters for the Hamiltonians ĥ0 and ĥa that reproduce well the features
of their individual electronic structures. However, changes in those parameters are expected
when they are no longer in isolation. It is reasonable to assume that the parameters to be
corrected should lie within the vicinity of the contact between the tube and the impurity. As
a first approximation, we assume that the nanotube is efficient in screening any local charge
variation and that only the on-site energy of the carbon atom nearest to the impurity is to be
affected. We hereafter refer to this assumption as the efficient-screening hypothesis. As we
shall see, this is not essential in our method, and it will later be relaxed to account for imperfect
screening. Likewise, the on-site potential energies on the impurity atom are also allowed to
change. Finally, the actual coupling between tube and the impurity atom is modelled by an
added electronic hopping between them. In summary, the interaction between the nanotube
and the impurity is represented by the following perturbing potential:

V̂ = |0〉δ0〈0| + |a〉δa〈a| + |0〉τ 〈a| + |a〉τ ∗〈0| (2)

where δ0 and δa are the corrections to the on-site potentials on the nearest carbon site (labelled
0) and on the impurity atom (labelled a), respectively. The hopping τ is responsible for
coupling the nanotube to the impurity atom.
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The knowledge of the perturbing potential V̂ fully determines the effect that the coupling
brings to the electronic structure of the system and consequently how it affects the transport
properties of the structure. It is our goal to introduce a simple procedure to determine this
contact-induced perturbation in terms of quantities that are evaluated by ab initio calculations,
like the binding energy and the charge transfer, for instance.

The binding energy is defined as the difference of total energies between the coupled and
decoupled configurations, and it reflects how strongly the objects interact. In mathematical
terms, the binding energy �E is defined as the difference of total energies given by �E =
ET(NT + A) − ET(NT) − ET(A), where ET(NT + A) represents the total energy for the
coupled configuration, ET(NT) is the total energy for the isolated nanotube and ET(A) the total
energy for the impurity atom. It is clear from the definition above that contributions to the total
energy that are common to both configurations play no role in the binding energy because of
cancellations. Bearing in mind that those individual total energies are usually large compared to
the binding energy, there is a large degree of unnecessary cancellations that could be avoided if
only the relevant contributions to the binding energy were taken into account. Instead of using
the Hamiltonian explicitly, in this paper we describe all the relevant quantities in terms of the
corresponding single-particle Green functions, which are extremely convenient in dealing with
total energy variations and in avoiding such cancellations. For instance, the Green function
Gi, j between arbitrary sites i and j of a pristine tube is obtained by simple renormalization
techniques based on Dyson’s equation [11, 12]. Likewise, equally simple expressions are also
available for the Green functions associated with the impurity adatoms.

The parameters associated with the potential V̂ in equation (2) are obtained by solving a
set of equations, traditionally associated with the so-called Lloyd’s formula method [13, 14].
This method is based on the existence of special sum rules for the total density of states in
the presence of a localized perturbation. In our case, the localized nature of V̂ leads to an
expression for the variation of the total electronic density of states �ρ that reads

�ρ(E) = − 1

π
Im Tr

d

dE
ln[1̂ − Ĝ(E)V̂ ], (3)

where Tr is the trace operator, Im represents the imaginary part and Ĝ(E) contains the
decoupled Green functions in block-diagonal form for electrons of energy E . More specifically,
the matrix Ĝ(E) is given by

Ĝ(E) =
[G0,0(E) 0

0 Ga,a(E)

]
, (4)

where G0,0(E) and Ga,a(E) are the Green functions Ĝ = (E − Ĥ0)
−1 projected on sites |0〉 and

|a〉, respectively. In matrix form, equation (2) is rewritten as

V̂ =
[

δ0 τ

τ † δa

]
. (5)

In the framework of the so-called tight-binding total energy methods, one can write the
total energy as the electronic structure contribution added to a repulsive energy term [15–17],
in which the latter has been given a formal correspondence with modern density functional
theory [18]. Moreover, as shown by Papaconstantopoulos and co-workers [15], this latter
contribution is easily accounted for by including it in the electronic on-site potential associated
with the tight-binding Hamiltonian. In this way, the total energy can be written as a sum over
the eigenvalues of the Hamiltonian, which in turn allows us to express the binding energy as a
function of �ρ.

Making use of the energy derivative in equation (3), both the total energy variation �E
and charge variation �N are easily derived. The former is obtained by a simple integration by
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parts, which gives

�E = 1

π

∫ EF

−∞
dE Im Tr ln[1̂ − Ĝ(E)V̂ ], (6)

whereas the latter is written as

�N = − 1

π
Im Tr ln[1̂ − Ĝ(EF)V̂ ]. (7)

EF in the equations above stands for the Fermi level of the system. Equations (6) and (7)
are fundamental expressions in our method in the sense that they describe the change of two
key quantities, namely total energy and total number of particles, as a result of the interaction
between the tube and the impurity atom. At this point it is worth mentioning that they are valid
not only for ĥ0 and ĥa defined above but for whichever Hamiltonian is chosen to represent the
electronic structure of the system, the only difference being in the precise form of the matrix
elements of the operators Ĝ and V̂ . Moreover, we are not limited to impurity adatoms, in the
sense that doping agents of different nature can be easily included if the appropriate form for
the corresponding Green function Ga,a is considered.

Substituting equations (4) and (5) into equations (6) and (7), we have

�E = 1

π

∫ EF

−∞
dE Im ln

[
(1 − G0,0 δ0)(1 − Ga,a δa) − G0,0 Ga,a τ 2

]
(8)

�N = − 1

π
Im ln

[
(1 − G0,0(EF)δ0)(1 − Ga,a(EF)δa) − G0,0(EF)Ga,a(EF)τ

2
]

(9)

In deriving equations (8) and (9), one must explicitly use the fact that Tr ln(X̂) = ln det(X̂).
Since we have three unknowns (δ0, δa and τ ), a third equation must be derived by taking into
account the charge transfer between the tube and the impurity. Dyson’s equation allows us
to obtain the change in the local density of states on the impurity site, which can be further
integrated to express the charge transfer �C between the tube and the impurity as follows:

�C = − 1

π

∫ EF

−∞
dE Im

{[G−1
a,a − δa − (1 − G0,0 δ0)

−1 G0,0 τ 2
]−1 − Ga,a

}
. (10)

The set of equations (8), (9) and (10) relates three basic quantities, namely the binding
energy, the change in the total number of particles and the charge transfer, with the parameters
δ0, δa and τ associated with the potential V̂ . Bearing in mind that equation (9) must reflect
the charge neutrality of the system, we must impose that the total charge be conserved, i.e.,
�N = 0. Therefore, the knowledge of �E and �C is in principle sufficient to fully determine
the potential V̂ . Rather than relying on band-structure fitting, which depends on which portions
of the Brillouin zone are chosen to be reproduced, here we propose to use ab initio-evaluated
binding energies and charge transfers as input values to obtain the correct parameters of the
potential V̂ . In this way, the parameterization of the perturbing potential is done in a unique
fashion and does not depend on any particular choice of fitting points.

3. Results

In what follows, we test the method described above by applying it to hydrogen atoms adsorbed
to metallic nanotubes. We start by considering a (6, 6) armchair nanotube in the presence
of a single hydrogen atom. Ab initio calculations were used to evaluate the binding energy
and charge transfer between the tube and the impurity atom. The calculations were done
using the SIESTA code [19] within the local-density approximation (LDA) approach for the
exchange and correlation potential [20]. All the structure comprising the nanotube plus the
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Figure 1. Folded band structures for a doped (6, 6) nanotube with a single H atom per unit cell. The
left and right panels are obtained by the Lloyd’s formula method, the former within the efficient-
screening assumption and the latter considering a screening cloud up to second-nearest neighbours.
The middle panel is the ab initio result.

adsorbed hydrogen atom is fully relaxed. The calculation shows that the sp2 hybridization of
the carbon atom linked to the hydrogen is converted to sp3-type, allowing a light distortion of
the carbon lattice from its equilibrium position. The C–H bond length is 1.149 Å, which does
not differ much from typical hydrocarbons such as the methane molecule (∼1.10 Å) [21]. The
calculated values for the total energy variation and the charge transfer are �E = −2.74 eV and
�C = 0.154e, respectively. Using them as input values in equations (8) and (10), we can obtain
the corresponding values of δ0 = 1.63γ0, δa = −2.36γ0 and τ = 2.14γ0, where γ0 = 2.66 eV.

Although the Lloyd’s formula method does not rely on band-structure fitting, it is
illustrative to compare the ab initio energy bands with those obtained by our scheme. With
the set of parameters δ0, δa and τ fully determined, we can reproduce the periodic boundary
conditions used in the DFT calculations and obtain the corresponding energy dispersion.
Such a comparison is shown in figure 1, in which the DFT band structure (middle panel) is
juxtaposed with the energy levels obtained by the Lloyd’s formula method (left panel). Both
diagrams display unmistakable similarities in the way their energy bands are distributed, which
places the efficient-screening hypothesis of the Lloyd’s formula method as an excellent first
approximation to describe the effect of impurity atoms on the electronic structure of nanotubes.

Despite the overall resemblance in the dispersion relations in the left and middle panels,
the Lloyd’s formula bands are not able to reproduce the detailed features of the band structure,
particularly around the Fermi energy. It is worth recalling that the use of equation (2) with
only three undetermined parameters relies on the assumption of efficient screening by the
nanotube conduction electrons. In other words, it assumes that any charge imbalance in the
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system is screened to the extent that only the on-site potential on the atom nearest to the
perturbation is affected. This is not a good assumption, as indicated by the local charge
distribution that results from the DFT calculation. In fact, the calculations point to a distribution
that is not entirely concentrated around a single atom but to one that is spread around a few
nearest neighbours. The efficient-screening assumption must therefore be relaxed if we wish to
improve the agreement between the band structures.

Imperfect screening can be easily included in our formalism if we consider that the
perturbing potential V̂ can now affect the next-nearest neighbours surrounding the contact
region. Although this increases the size of the matrix V̂ , equation (3) is still valid in expressing
the change in the total density of states due to the contact between the impurity and the
tube. The potential V̂ will now involve two more matrix elements, namely δ1

0 and δ2
0 , which

are corrections to the on-site potentials on the two non-equivalent nearest-neighbour carbon
atoms. To comply with the extra undetermined matrix elements, an equal number of additional
equations are required. In this case, the two additional equations are expressions for the local
charge variations on the nearest-neighbour atoms, which can also be read out from the DFT
results. It turns out that the efficient-screening hypothesis is not a limitation of our approach,
in the sense that we can always consider screening clouds of arbitrary sizes, the only difference
being in the number of equations required to obtain the adequate parameters. The set of five
equations is straightforwardly derived from equation (3), but they are not displayed here, for
brevity. When solved, the equations provide the following results: δ0 = 1.26γ0, δ1

0 = −1.20γ0,
δ2

0 = −0.25γ0, δa = 0.28γ0 and τ = 0.76γ0, which lead to the band structure depicted in the
right panel of figure 1. The improvement is considerable when compared with the efficient-
screening results of the left panel. Not only is the general trend of the dispersion reproduced
but also the small energy gap and the weakly dispersive level that appears near the Fermi
energy [22]. Despite the remaining differences, mainly due to the lack of σ–π hybridization,
the resemblance between the two graphs is remarkable.

As mentioned previously, the key advantage of mapping the first-principles results with
a set of corrected parameters is that we do not have to restrict ourselves to a single impurity,
and can in principle include a finite concentration of adsorbed atoms in a truly disordered
configuration. We are then able to investigate how the transport properties of carbon nanotubes
are affected by a given concentration of impurity atoms along their length. Using our
recipe for correcting the Hamiltonian parameters, we include a large number of impurities
randomly dispersed within a section of the nanotube. Each added impurity requires parameter
corrections according to the size of the screening cloud. The only constraint in the random
distribution is that impurities are always sufficiently apart to avoid overlap between the
screening clouds. The conductance across such a disordered structure is then calculated using
the Kubo formula [11, 12] and averaged over a large number of disorder configurations [23].
This ensemble averaging is crucial in providing results with meaningful statistical significance
and could not be done without a less computationally demanding scheme, such as the one
suggested in this paper. Figure 2(a) shows the conductance as a function of the energy for
two distinct concentrations of H atoms adsorbed on the surface of a (6, 6) nanotube. It is
evident from the conductance results that the H atom acts as a strong scattering centre for the
charge carriers. Figure 2(b) shows the logarithm of the average conductance as a function of
concentration indicating how a nanotube responds to H doping. As expected, an exponential
dependence on the impurity concentration is observed [24].

Although the results here presented were based on a simplified description for the
electronic structure of both the nanotube and the atomic impurity, it is straightforward to
generalize our procedure to account for more degrees of freedom, like, for instance, the
multiorbital character of the unperturbed Hamiltonian Ĥ0 or by including spin-resolved
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Figure 2. (a) Average conductance as a function of the Fermi energy for distinct concentrations of
H atoms distributed randomly along a (6, 6) carbon nanotube: dotted line for pristine tube, dashed
line for a carbon nanotube with only 1 adsorbed atom, full line for x = 1% and broad full line for
x = 3%. (b) Logarithm of the average conductance scaled by the conductance for the pristine tube
(
0) as a function of the concentration for distinct Fermi energies: full line for EF = 0.0γ0 and
broad full line for EF = 1.2γ0. Dashed lines are linear fittings.

(This figure is in colour only in the electronic version)

perturbations typically associated with magnetic impurities [25]. In this case, the only
difference lies in the expressions for the Green function in equation (4) and in the matrix
elements of the perturbation V̂ in equation (5). The parameters τ , δ0 and δa acquire a
matrix character that reflects the additional degrees of freedom of the constituent parts. The
set of equations needed to obtain the corrected parameters is still based on the fundamental
equations (6) and (7). Once again, an increase in the number of parameters requires more
equations, this time involving the extra degrees of freedom. Following the same steps as before,
we can use quantities from a simple DFT calculation as input to our set of equations. In addition
to the binding energy and the overall charge transfer, we may require information about how
the charge is distributed in their respective degrees of freedom, which again is readily available
from DFT calculations.
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4. Summary

In summary, we have presented a method that provides a simple way of accounting for
disorder effects on the transport properties of doped nanotubes. Ab initio evaluations of the
electronic structure of a nanotube with a single doping atom are used as input to generate
the corresponding changes to the tight-binding-like parameters surrounding the impurity. Our
method makes use of special sum rules for the single-particle Green functions that provide a
closed-form expression for the variation of the total density of states, which in turn can be
used to relate the desired parameters with quantities like binding energy and charge transfer.
These latter quantities, when evaluated by first principles, give a direct way of determining
the unknown parameters. It is worth stressing that, unlike band-structure fitting, we do not
depend on the choice of Brillouin zone points to be matched against. On the contrary, a finite
number of equations give unique solutions to the parameters that can be used to evaluate the
corresponding conductances. By averaging over a large ensemble of disordered configurations,
we can obtain results with statistical significance that are likely to reproduce the measurable
results of transport in doped nanotubes.
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